Kenai Peninsula Borough School District Science: Physical Science

Unit Title 8: MOTION AND FORCES

NGSS Standards:

- **HS-PS2-1.** Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
- **HS-PS2-2.** Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
- **HS-PS2-3.** Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
- **HS-PS2-4.** Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.
- **HS-PS2-5.** Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.
- **HS-PS2-6**. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.
- **HS-PS3-5**. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

ELA/LITERACY:

- **RST.11-12.1** Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS2-1) (HS-PS2-6)
- RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)
- **WHST.11-12.2** Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-PS2-6)
- **WHST.11-12.7** Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS2-3) (HS-PS2-5)

WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS2-5)

WHST.11-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1) (HS-PS2-5)

MATHEMATICS:

- MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)
- **a.** decontextualize to abstract a given situation and represent it symbolically and manipulate the representing symbols.
- **b.** reflect during the manipulation process in order to probe into the meanings for the symbols involved
- **c.** create a coherent representation of the problem
- **d.** make sense of quantities and their relationships in problem situations
- e. attend to the meanings of quantities
- **f.** use flexibility with different properties of operations and objects
- g. translate an algebraic problem to a real-world context
- h. explain the relationship between the symbolic abstraction and the context of the problem
- i. compute using different properties
- j. consider the quantitative values, including units, for the numbers in a problem

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

- a. apply mathematics to solve problems in everyday life, society, and workplace
- **b.** identify important quantities in a practical situation and map the relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas
- **c.** consistently interpret mathematical results in the context of the situation and reflect on whether the results make sense
- **d.** apply knowledge, making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later
- **e.** make assumptions and approximations to simplify a situation, realizing the final solution will need to be revised
- **f.** identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, and formulas
- g. analyze quantitative relationships to draw conclusions
- h. improve the model if it has not served its purpose

HSN.Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1) (HS-PS2-2) (HS-PS2-4) (HS-PS2-5) (HS-PS2-6)

HSN.Q.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1), (HS-PS2-2), (HS-PS2-4), (HS-PS2-5), (HS-PS2-6)

HSN.Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1) (HS-PS2-2) (HS-PS2-4) (HS-PS2-5) (HS-PS2-6)

HSA.SSE.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1) (HS-PS2-4)

HSA.SSE.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1) (HS-PS2-4)

HSA.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1) (HS-PS2-4)

HSA.CED.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1) (HS-PS2-2)

HSA.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1) (HS-PS2-2)

HSA.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1) (HS-PS2-2)

HSF-IF.7 Graph functions expressed symbolically and show key features of the graph, by in hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

HSS-IS.1 Represent data with plots on the real number line (dot plots, histograms, and box plots). (HS-PS2-1)

ESSENTIAL QUESTIONS:

- 1. What causes motion?
- 2. How would you test each of Newton's Laws?
- **3.** Distinguish between the different types of forces.
- **4.** Can you elaborate on the reason motion is relative?
- **5.** Elaborate on velocity versus acceleration.
- **6.** How is momentum conserved in different situations?
- **7.** How would you describe a falling body and how does horizontal speed affect the rate of a falling body?
- 8. Describe the motion of a ball dropped vertically and one simultaneously thrown horizontal?

BIG IDEAS:

1. Different forces

- **2.** Vector versus scalar quantities
- **3.** Friction can be friend or foe.
- **4.** Causes of motion
- 5. Newton's laws and forces in everyday life
- **6.** Types of collisions
- **7.** One dimensional versus two dimensional motion

Vocabulary: Force, Friction, Speed, Velocity, Acceleration, Newton's Laws, Vector, Momentum, Motion, Inertia, Impulse, Weight, Inverse square law, Equilibrium, Net force, Terminal velocity, Gravity, Projectile motion, Collision, Projectile motion